1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
//! Executors allow easy scheduling and execution of functions or closures.
//! The `CoreExecutor` uses a single thread for scheduling and execution, while the
//! `ThreadPoolExecutor` uses multiple threads to execute the function.
//! Internally, each executor uses a `tokio_core::reactor::Core` as event loop, that will drive
//! the scheduling of the functions (and for the `CoreExecutor`, also their execution). A reference
//! to the event loop is passed to every function when executed, allowing it to register additional
//! events if needed.
use futures::future::Future;
use futures::sync::oneshot::{channel, Sender};
use futures_cpupool::{Builder, CpuPool};
use tokio_core::reactor::Timeout;
use tokio_core::reactor::{Core, Handle, Remote};

use std::io;
use std::sync::Arc;
use std::sync::atomic::{AtomicBool, Ordering};
use std::thread::{self, JoinHandle};
use std::time::{Instant, Duration};


/// A handle that allows a task to be stopped. A new handle is returned every time a new task is
/// scheduled. Note that stopping a task will prevent it from running the next time it's scheduled
/// to run, but it won't interrupt a task that is currently being executed.
#[derive(Clone)]
pub struct TaskHandle {
    should_stop: Arc<AtomicBool>,
}

impl TaskHandle {
    fn new() -> TaskHandle {
        TaskHandle { should_stop: Arc::new(AtomicBool::new(false)) }
    }

    /// Stops the correspondent task. Not that a running task won't be interrupted, but
    /// future tasks executions will be prevented.
    pub fn stop(&self) {
        self.should_stop.store(true, Ordering::Relaxed);
    }

    /// Returns true if the task is stopped.
    pub fn stopped(&self) -> bool {
        self.should_stop.load(Ordering::Relaxed)
    }
}

fn fixed_interval_loop<F>(scheduled_fn: F, interval: Duration, handle: &Handle, task_handle: TaskHandle)
    where F: Fn(&Handle) + Send + 'static
{
    if task_handle.stopped() {
        return;
    }
    let start_time = Instant::now();
    scheduled_fn(handle);
    let execution = start_time.elapsed();
    let next_iter_wait = if execution >= interval {
        Duration::from_secs(0)
    } else {
        interval - execution
    };
    let handle_clone = handle.clone();
    let t = Timeout::new(next_iter_wait, handle).unwrap()
        .then(move |_| {
            fixed_interval_loop(scheduled_fn, interval, &handle_clone, task_handle);
            Ok::<(), ()>(())
        });
    handle.spawn(t);
}

fn calculate_delay(interval: Duration, execution: Duration, delay: Duration) -> (Duration, Duration) {
    if execution >= interval {
        (Duration::from_secs(0), delay + execution - interval)
    } else {
        let wait_gap = interval - execution;
        if delay == Duration::from_secs(0) {
            (wait_gap, Duration::from_secs(0))
        } else if delay < wait_gap {
            (wait_gap - delay, Duration::from_secs(0))
        } else {
            (Duration::from_secs(0), delay - wait_gap)
        }
    }
}

fn fixed_rate_loop<F>(scheduled_fn: F, interval: Duration, handle: &Handle, delay: Duration, task_handle: TaskHandle)
    where F: Fn(&Handle) + Send + 'static
{
    if task_handle.stopped() {
        return;
    }
    let start_time = Instant::now();
    scheduled_fn(handle);
    let execution = start_time.elapsed();
    let (next_iter_wait, updated_delay) = calculate_delay(interval, execution, delay);
    let handle_clone = handle.clone();
    let t = Timeout::new(next_iter_wait, handle).unwrap()
        .then(move |_| {
            fixed_rate_loop(scheduled_fn, interval, &handle_clone, updated_delay, task_handle);
            Ok::<(), ()>(())
        });
    handle.spawn(t);
}


struct CoreExecutorInner {
    remote: Remote,
    termination_sender: Option<Sender<()>>,
    thread_handle: Option<JoinHandle<()>>,
}

impl Drop for CoreExecutorInner {
    fn drop(&mut self) {
        let _ = self.termination_sender.take().unwrap().send(());
        let _ = self.thread_handle.take().unwrap().join();
    }
}

/// A `CoreExecutor` is the most simple executor provided. It runs a single thread, which is
/// responsible for both scheduling the function (registering the timer for the wakeup),
/// and the actual execution. The executor will stop once dropped. The `CoreExecutor`
/// can be cloned to generate a new reference to the same underlying executor.
/// Given the single threaded nature of this executor, tasks are executed sequentially, and a long
/// running task will cause delay in other subsequent executions.
pub struct CoreExecutor {
    inner: Arc<CoreExecutorInner>
}

impl Clone for CoreExecutor {
    fn clone(&self) -> Self {
        CoreExecutor { inner: Arc::clone(&self.inner) }
    }
}

impl CoreExecutor {
    /// Creates a new `CoreExecutor`.
    pub fn new() -> Result<CoreExecutor, io::Error> {
        CoreExecutor::with_name("core_executor")
    }

    /// Creates a new `CoreExecutor` with the specified thread name.
    pub fn with_name(thread_name: &str) -> Result<CoreExecutor, io::Error> {
        let (termination_tx, termination_rx) = channel();
        let (core_tx, core_rx) = channel();
        let thread_handle = thread::Builder::new()
            .name(thread_name.to_owned())
            .spawn(move || {
                debug!("Core starting");
                let mut core = Core::new().expect("Failed to start core");
                let _ = core_tx.send(core.remote());
                match core.run(termination_rx) {
                    Ok(v) => debug!("Core terminated correctly {:?}", v),
                    Err(e) => debug!("Core terminated with error: {:?}", e),
                }
            })?;
        let inner = CoreExecutorInner {
            remote: core_rx.wait().expect("Failed to receive remote"),
            termination_sender: Some(termination_tx),
            thread_handle: Some(thread_handle),
        };
        let executor = CoreExecutor {
            inner: Arc::new(inner)
        };
        debug!("Executor created");
        Ok(executor)
    }

    /// Schedule a function for running at fixed intervals. The executor will try to run the
    /// function every `interval`, but if one execution takes longer than `interval` it will delay
    /// all the subsequent calls.
    pub fn schedule_fixed_interval<F>(&self, initial: Duration, interval: Duration, scheduled_fn: F) -> TaskHandle
        where F: Fn(&Handle) + Send + 'static
    {
        let task_handle = TaskHandle::new();
        let task_handle_clone = task_handle.clone();
        self.inner.remote.spawn(move |handle| {
            let handle_clone = handle.clone();
            let t = Timeout::new(initial, handle).unwrap()
                .then(move |_| {
                    fixed_interval_loop(scheduled_fn, interval, &handle_clone, task_handle_clone);
                    Ok::<(), ()>(())
                });
            handle.spawn(t);
            Ok::<(), ()>(())
        });
        task_handle
    }

    /// Schedule a function for running at fixed rate. The executor will try to run the function
    /// every `interval`, and if a task execution takes longer than `interval`, the wait time
    /// between task will be reduced to decrease the overall delay.
    pub fn schedule_fixed_rate<F>(&self, initial: Duration, interval: Duration, scheduled_fn: F) -> TaskHandle
        where F: Fn(&Handle) + Send + 'static
    {
        let task_handle = TaskHandle::new();
        let task_handle_clone = task_handle.clone();
        self.inner.remote.spawn(move |handle| {
            let handle_clone = handle.clone();
            let t = Timeout::new(initial, handle).unwrap()
                .then(move |_| {
                    fixed_rate_loop(scheduled_fn, interval, &handle_clone, Duration::from_secs(0), task_handle_clone);
                    Ok::<(), ()>(())
                });
            handle.spawn(t);
            Ok::<(), ()>(())
        });
        task_handle
    }
}


/// A `ThreadPoolExecutor` will use one thread for the task scheduling and a thread pool for
/// task execution, allowing multiple tasks to run in parallel.
#[derive(Clone)]
pub struct ThreadPoolExecutor {
    executor: CoreExecutor,
    pool: CpuPool
}

impl ThreadPoolExecutor {
    /// Creates a new `ThreadPoolExecutor` with the specified number of threads. Threads will
    /// be named "pool_thread_0", "pool_thread_1" and so on.
    pub fn new(threads: usize) -> Result<ThreadPoolExecutor, io::Error> {
        ThreadPoolExecutor::with_prefix(threads, "pool_thread_")
    }

    /// Creates a new `ThreadPoolExecutor` with the specified number of threads and prefix for
    /// the thread names.
    pub fn with_prefix(threads: usize, prefix: &str) -> Result<ThreadPoolExecutor, io::Error> {
        let new_executor = CoreExecutor::with_name(&format!("{}executor", prefix))?;
        Ok(ThreadPoolExecutor::with_executor(threads, prefix, new_executor))
    }

    /// Creates a new `ThreadPoolExecutor` with the specified number of threads, prefix and
    /// using the given `CoreExecutor` for scheduling.
    pub fn with_executor(threads: usize, prefix: &str, executor: CoreExecutor) -> ThreadPoolExecutor {
        let pool = Builder::new()
            .pool_size(threads)
            .name_prefix(prefix)
            .create();
        ThreadPoolExecutor { pool, executor }
    }

    /// Schedules the given function to be executed every `interval`. The function will be
    /// scheduled on one of the threads in the thread pool.
    pub fn schedule_fixed_rate<F>(&self, initial: Duration, interval: Duration, scheduled_fn: F) -> TaskHandle
        where F: Fn(&Remote) + Send + Sync + 'static
    {
        let pool_clone = self.pool.clone();
        let arc_fn = Arc::new(scheduled_fn);
        self.executor.schedule_fixed_interval(  // Fixed interval is enough
            initial,
            interval,
            move |handle| {
                let arc_fn_clone = arc_fn.clone();
                let remote = handle.remote().clone();
                let t = pool_clone.spawn_fn(move || {
                    arc_fn_clone(&remote);
                    Ok::<(),()>(())
                });
                handle.spawn(t);
            }
        )
    }

    // TODO: make pub(crate)
    /// Returns the thread pool used internally.
    pub fn pool(&self) -> &CpuPool {
        &self.pool
    }
}


#[cfg(test)]
mod tests {
    use std::sync::{Arc, RwLock};
    use std::thread;
    use std::time::{Duration, Instant};

    use super::{CoreExecutor, ThreadPoolExecutor, calculate_delay};

    #[test]
    fn fixed_interval_test() {
        let timings = Arc::new(RwLock::new(Vec::new()));
        {
            let executor = CoreExecutor::new().unwrap();
            let timings_clone = Arc::clone(&timings);
            executor.schedule_fixed_rate(
                Duration::from_secs(0),
                Duration::from_secs(1),
                move |_handle| {
                    timings_clone.write().unwrap().push(Instant::now());
                }
            );
            thread::sleep(Duration::from_millis(5500));
        }

        let timings = timings.read().unwrap();
        assert_eq!(timings.len(), 6);
        for i in 1..6 {
            let execution_interval = timings[i] - timings[i-1];
            assert!(execution_interval < Duration::from_millis(1020));
            assert!(execution_interval > Duration::from_millis(980));
        }
    }

    #[test]
    fn fixed_interval_slow_task_test() {
        let counter = Arc::new(RwLock::new(0));
        let counter_clone = Arc::clone(&counter);
        {
            let executor = CoreExecutor::new().unwrap();
            executor.schedule_fixed_interval(
                Duration::from_secs(0),
                Duration::from_secs(1),
                move |_handle| {
                    // TODO: use atomic int when available
                    let counter = {
                        let mut counter = counter_clone.write().unwrap();
                        (*counter) += 1;
                        *counter
                    };
                    if counter == 1 {
                        thread::sleep(Duration::from_secs(3));
                    }
                }
            );
            thread::sleep(Duration::from_millis(5500));
        }
        assert_eq!(*counter.read().unwrap(), 4);
    }

    #[test]
    fn calculate_delay_test() {
        fn s(n: u64) -> Duration { Duration::from_secs(n) };
        assert_eq!(calculate_delay(s(10), s(3), s(0)), (s(7), s(0)));
        assert_eq!(calculate_delay(s(10), s(11), s(0)), (s(0), s(1)));
        assert_eq!(calculate_delay(s(10), s(3), s(3)), (s(4), s(0)));
        assert_eq!(calculate_delay(s(10), s(3), s(9)), (s(0), s(2)));
        assert_eq!(calculate_delay(s(10), s(12), s(15)), (s(0), s(17)));
    }

    #[test]
    fn fixed_rate_test() {
        let counter = Arc::new(RwLock::new(0));
        let counter_clone = Arc::clone(&counter);
        {
            let executor = CoreExecutor::new().unwrap();
            executor.schedule_fixed_rate(
                Duration::from_secs(0),
                Duration::from_secs(1),
                move |_handle| {
                    let mut counter = counter_clone.write().unwrap();
                    (*counter) += 1;
                }
            );
            thread::sleep(Duration::from_millis(5500));
        }
        assert_eq!(*counter.read().unwrap(), 6);
    }

    #[test]
    fn fixed_rate_slow_task_test() {
        let counter = Arc::new(RwLock::new(0));
        let counter_clone = Arc::clone(&counter);
        {
            let executor = CoreExecutor::new().unwrap();
            executor.schedule_fixed_rate(
                Duration::from_secs(0),
                Duration::from_secs(1),
                move |_handle| {
                    // TODO: use atomic int when available
                    let counter = {
                        let mut counter = counter_clone.write().unwrap();
                        (*counter) += 1;
                        *counter
                    };
                    if counter == 1 {
                        thread::sleep(Duration::from_secs(3));
                    }
                }
            );
            thread::sleep(Duration::from_millis(5500));
        }
        assert_eq!(*counter.read().unwrap(), 6);
    }

    #[test]
    fn fixed_rate_slow_task_test_pool() {
        let counter = Arc::new(RwLock::new(0));
        let counter_clone = Arc::clone(&counter);
        {
            let executor = ThreadPoolExecutor::new(20).unwrap();
            executor.schedule_fixed_rate(
                Duration::from_secs(0),
                Duration::from_secs(1),
                move |_remote| {
                    // TODO: use atomic int when available
                    let counter = {
                        let mut counter = counter_clone.write().unwrap();
                        (*counter) += 1;
                        *counter
                    };
                    if counter == 1 {
                        thread::sleep(Duration::from_secs(3));
                    }
                }
            );
            thread::sleep(Duration::from_millis(5500));
        }
        assert_eq!(*counter.read().unwrap(), 6);
    }

    #[test]
    fn fixed_rate_stop_test() {
        let counter1 = Arc::new(RwLock::new(0));
        let counter2 = Arc::new(RwLock::new(0));
        let counter1_clone = Arc::clone(&counter1);
        let counter2_clone = Arc::clone(&counter2);
        {
            let executor = CoreExecutor::new().unwrap();
            let t1 = executor.schedule_fixed_rate(
                Duration::from_secs(0),
                Duration::from_secs(1),
                move |_handle| {
                    let mut counter = counter1_clone.write().unwrap();
                    (*counter) += 1;
                }
            );
            executor.schedule_fixed_rate(
                Duration::from_secs(0),
                Duration::from_secs(1),
                move |_handle| {
                    let mut counter = counter2_clone.write().unwrap();
                    (*counter) += 1;
                }
            );
            thread::sleep(Duration::from_millis(5500));
            t1.stop();
            thread::sleep(Duration::from_millis(5000));
        }
        assert_eq!(*counter1.read().unwrap(), 6);
        assert_eq!(*counter2.read().unwrap(), 11);
    }

    #[test]
    fn fixed_interval_stop_test() {
        let counter1 = Arc::new(RwLock::new(0));
        let counter2 = Arc::new(RwLock::new(0));
        let counter1_clone = Arc::clone(&counter1);
        let counter2_clone = Arc::clone(&counter2);
        {
            let executor = CoreExecutor::new().unwrap();
            let t1 = executor.schedule_fixed_interval(
                Duration::from_secs(0),
                Duration::from_secs(1),
                move |_handle| {
                    let mut counter = counter1_clone.write().unwrap();
                    (*counter) += 1;
                }
            );
            executor.schedule_fixed_rate(
                Duration::from_secs(0),
                Duration::from_secs(1),
                move |_handle| {
                    let mut counter = counter2_clone.write().unwrap();
                    (*counter) += 1;
                }
            );
            thread::sleep(Duration::from_millis(5500));
            t1.stop();
            thread::sleep(Duration::from_millis(5000));
        }
        assert_eq!(*counter1.read().unwrap(), 6);
        assert_eq!(*counter2.read().unwrap(), 11);
    }
}