1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
use futures::future::Future;
use futures_cpupool::CpuPool;
use tokio_core::reactor::{Handle, Remote, Timeout};
use executor::{CoreExecutor, ThreadPoolExecutor};
use std::sync::Arc;
use std::time::Duration;
pub trait TaskGroup: Send + Sync + Sized + 'static {
type TaskId: Send;
fn get_tasks(&self) -> Vec<Self::TaskId>;
fn execute(&self, Self::TaskId);
}
fn schedule_tasks_local<T: TaskGroup>(task_group: &Arc<T>, interval: Duration, handle: &Handle) {
let tasks = task_group.get_tasks();
if tasks.is_empty() {
return
}
let task_interval = interval / tasks.len() as u32;
for (i, task) in tasks.into_iter().enumerate() {
let task_group_clone = task_group.clone();
let t = Timeout::new(task_interval * i as u32, handle).unwrap()
.then(move |_| {
task_group_clone.execute(task);
Ok::<(), ()>(())
});
handle.spawn(t);
}
}
fn schedule_tasks_remote<T: TaskGroup>(task_group: &Arc<T>, interval: Duration, remote: &Remote, pool: &CpuPool) {
let tasks = task_group.get_tasks();
if tasks.is_empty() {
return
}
let task_interval = interval / tasks.len() as u32;
for (i, task) in tasks.into_iter().enumerate() {
let task_group = task_group.clone();
let pool = pool.clone();
remote.spawn(move |handle| {
let task_group = task_group.clone();
let pool = pool.clone();
let t = Timeout::new(task_interval * i as u32, handle).unwrap()
.then(move |_| {
task_group.execute(task);
Ok::<(), ()>(())
});
handle.spawn(pool.spawn(t));
Ok::<(), ()>(())
})
}
}
pub trait TaskGroupScheduler {
fn schedule<T: TaskGroup>(&self, task_group: T, initial: Duration, interval: Duration) -> Arc<T>;
}
impl TaskGroupScheduler for CoreExecutor {
fn schedule<T: TaskGroup>(&self, task_group: T, initial: Duration, interval: Duration) -> Arc<T> {
let task_group = Arc::new(task_group);
let task_group_clone = task_group.clone();
self.schedule_fixed_rate(
initial,
interval,
move |handle| {
schedule_tasks_local(&task_group_clone, interval, handle);
}
);
task_group
}
}
impl TaskGroupScheduler for ThreadPoolExecutor {
fn schedule<T: TaskGroup>(&self, task_group: T, initial: Duration, interval: Duration) -> Arc<T> {
let task_group = Arc::new(task_group);
let task_group_clone = task_group.clone();
let pool = self.pool().clone();
self.schedule_fixed_rate(
initial,
interval,
move |remote| {
schedule_tasks_remote(&task_group_clone, interval, remote, &pool);
}
);
task_group
}
}
#[cfg(test)]
mod tests {
use std::sync::{Arc, RwLock};
use std::thread;
use std::time::{Duration, Instant};
use task_group::{TaskGroup, TaskGroupScheduler};
use executor::ThreadPoolExecutor;
type TaskExecutions = Vec<Vec<Instant>>;
struct TestGroup {
executions_lock: Arc<RwLock<TaskExecutions>>,
}
impl TestGroup {
fn new() -> TestGroup {
let executions = (0..5).map(|_| Vec::new()).collect::<Vec<_>>();
TestGroup {
executions_lock : Arc::new(RwLock::new(executions))
}
}
fn executions_lock(&self) -> Arc<RwLock<TaskExecutions>> {
self.executions_lock.clone()
}
}
impl TaskGroup for TestGroup {
type TaskId = usize;
fn get_tasks(&self) -> Vec<usize> {
vec![0, 1, 2, 3, 4]
}
fn execute(&self, task_id: usize) {
let mut executions = self.executions_lock.write().unwrap();
executions[task_id].push(Instant::now());
}
}
#[test]
fn task_group_test() {
let group = TestGroup::new();
let executions_lock = group.executions_lock();
{
let executor = ThreadPoolExecutor::new(4).unwrap();
executor.schedule(group, Duration::from_secs(0), Duration::from_secs(4));
thread::sleep(Duration::from_millis(11800));
}
let executions = &executions_lock.read().unwrap();
assert!(executions.len() == 5);
for task in 0..5 {
assert!(executions[task].len() == 3);
for run in 1..3 {
let task_interval = executions[task][run] - executions[task][run-1];
assert!(task_interval < Duration::from_millis(4500));
assert!(task_interval > Duration::from_millis(500));
}
}
for i in 1..15 {
let task = i % 5;
let run = i / 5;
let task_prev = (i - 1) % 5;
let run_prev = (i - 1) / 5;
let inter_task_interval = executions[task][run] - executions[task_prev][run_prev];
assert!(inter_task_interval < Duration::from_millis(1500));
assert!(inter_task_interval > Duration::from_millis(500));
}
}
}